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Abstract

Differential and angular integrated cross sections for elastic collisions of identical rare gas atoms

He-He, Ne-Ne, Ar-Ar, Kr-Kr, and Xe-Xe are recommended for collision energies from ∼ 0.01 eV

to 10 keV. Cross sections are also presented for He-Ar, Ne-Ar, and Ne-Xe. The data includes

calculations of elastic scattering that utilize potential energy curves for large internuclear separa-

tions previously determined from near thermal transport, viral coefficient, and scattering data. At

small separations we use published theoretical calculations for the lighter identical atoms and their

extrapolation to pairs involving Xe. The scattering phaseshifts are calculated using the JWBK

approximation as described previously for Ar-Ar. The calculated cross sections are compared with

published scattering experiments and transport coefficient analyses. Extrapolations of experimen-

tal elastic and inelastic differential cross sections are used to estimate the reduction in the integral

cross sections caused by inelastic collisions for He-He, Ne-Ne, Ar-Ar, and He-Ne. Total and vis-

cosity cross sections are fitted with empirical functions for energies from ∼ 0.01 eV to 10 keV

to facilitate their use in plasma models. Published comparisons of experimental and theoretical

integral inelastic cross sections are reviewed and corrected were necessary.

PACS numbers: PACS numbers: 34.50.-s; 34.20.-b; 52.20.Hv

1



I. INTRODUCTION

Integrated and differential cross sections for use in modelling discharge plasmas, shock

waves, etc. in rare gases are recommended for energies from 0.1 eV to 10 keV. Because

of our interest in transport phenomena, such as the flow of energy to electrodes via fast

atoms, we emphasize the large angle scattering that dominates, for example, the viscosity

cross section. Our starting point for each atom-atom pair is a calculation of cross sections

for elastic scattering. We compare these results with experiment over a wide energy range

and consider the modifications of the cross sections resulting from inelastic scattering at

the higher energies. We provide approximate analytic expressions to our recommendations

for use in plasma models. In some cases, this includes the highly anisotropic differential

scattering cross sections that are found over the whole energy range of interest. I NEED

TO DO THIS FOR He AND Ne.

Experiments [1–3] and models have shown the importance of fast atoms with energies

from 10 to 1000 eV in plasma-surface interactions [1, 4–11] and in the production of excited

and ionized atoms in plasmas [1, 3–5, 9, 11, 12]. Recent applications for rare-gas atom pairs

include: Hartmann et al [13], He-He; Oh et al [14], Xe-Xe; Bogaerts [15], Ar-Ar; Donkó

[16], Ar-Ar; Revel et al [17], Ar-Ar; Hagelaar et al [18], Ar-Ar; Capedeville et al [19], Ar-Ar

and Ne-Xe; Bánó et al [20], He-Ar; The calculation of elastic scattering cross sections for H

atoms with various atoms, e.g., H, D, T, and He, has received considerable attention recently

in connection with modelling of edge effects in fusion devices [21–23]. Also, models [24] of

shock waves have made use of energy dependent atom-atom scattering cross sections from

thermal energies up to roughly 1 eV. In some these cases the cross sections used differ from

the results presented here by more than an order of magnitude. Of course, the importance

of such errors depends on the individual problem.

The analysis of viscosity, thermal conductivity, and isotopic diffusion coefficient data to

determine effective cross sections and interaction potentials for symmetric and asymmetric

rare-gas atom pairs at energies below roughly 1 eV is discussed in many textbooks [25–27]

and review papers [28, 29]. Over 30 years ago, experimental measurements of scattering of

He by He[30–33] and other gases and of theoretical investigations[34–37] provided a good

understanding of the principals involved in the elastic, inelastic, and ionization collisions of

rare gas atoms. More recently, empirical total scattering and ionization[38] cross sections
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have been reviewed. The theoretical and experimental data for Ar-Ar atom scattering has

been reviewed and the elastic scattering theory extended to higher energies[11]. Unfortu-

nately, there does not seem to be a modern review of the available data for other rare gas

atom pairs or of inelastic data.

In Sec. II We begin with a brief discussion the definitions of the cross sections of interest

in this review. Our interaction potentials and theoretical elastic differential cross sections

integral cross sections are presented and compared with available experiments in Sections III

through X. In these sections we review the limited data on the effects of inelastic collisions

on the cross sections and estimate the effects of inelastic collisions on integrated transport

cross sections for some of the gas pairs. In Appendix A and B we present analytical fits to

the theoretical results. We do not discuss data for collision energies below 0.01 eV or above

10 keV.

II. CROSS SECTION THEORY SUMMARY

This section is a condensed review of the definitions of the cross sections used in this

paper. See Ref. [11] for a more complete summary of the theory of our calculation of

elastic scattering as applied to Ar-Ar. Expressions for the observables of interest in terms of

these scattering phaseshifts are somewhat different depending on whether the two atoms are

identical or nonidentical particles. Reference [27] gives the formulas only for the nonidentical

case, which is relevant to He-Ar. formulas for the identical atom case are discussed by

???????. For non-identical atom case, the differential scattering cross section is

I(θ, E) = |f(θ, E)|2, (1)

where the scattering amplitude is given by

f(θ, E) =
1

2ik

∞∑

l=0

(2l + 1)

(
e2iδl(E) − 1

)
Pl(cos θ). (2)

Three observables of interest for transport problems and beam experiments are obtained

from integrals over the elastic differential scattering cross section. The first of these is what

we will call the beam attenuation cross section defined by
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σatt = 2π

∫ θmax

θd

I(θ) sin θdθ, (3)

Here θmax = π for asymmetric collisions and θmax = π/2 for symmetric collisions. In beam

attenuation experiments the lower limit θd is set by the angular aperture of the atom detector

[39, 40]. We follow the convention of calling the cross section obtained when θd → 0 the

total cross section σt [25–27, 41]. As we will see in section III B, experimental values of σatt

are generally much smaller than σt, so that σt becomes an idealized quantity of principal

interest as a means of comparing theories or as a numerical reference in modelling. Note

that what we call the total cross section has been termed the elastic cross section in several

recent papers [22, 23]. We avoid this terminology because the viscosity and diffusion (where

applicable) cross sections are also elastic in the conventional sense that the processes they

describe do not lead to a change of the internal energy of the colliding atoms.

Equation 3 can also be used to calculate integrated or total inelastic cross sections. Here

a small value for the lower limit θd is less critical because the inelastic scattering occurs at

relatively large angles. See, for example, section III C. A problem to be cited later is that

there are different conventions as to the upper limit θmax to be used in the case of symmetric

collisions. Theoreticians conventionally use θmax = π/2 in order to avoid counting ”events”

twice, whereas experimentalist conventionally normalize their results to the collection of all

of the photons or ion-electron pairs produced and so use θmax = π.

The integral viscosity cross section appears in transport models when one is concerned

with the angular distribution of the scattered atom, rather than just that scattering took

place. It is the simplest precisely-defined measure of the importance of large angle scattering

in symmetric atom-atom collisions. It is particularly important in plasma modelling because

it is a measure of the resistance of the gas to energy transport, e.g., to first order the viscosity

cross section determines the thermal conductivity of a gas[25–27]. The viscosity cross section

[25–27, 41] for the symmetric case is

σv = 2π

∫ π/2

0

I(θ) sin3 θdθ. (4)

For the asymmetric case the integral extends from 0 to π.

The third transport cross section of interest here is that for diffusion [25–27, 41], used to

describe the random walk motion of one type of atom through a gas of other atoms. This
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cross section is often called the momentum transfer cross section, although it equals the

diffusion cross section only for elastic collisions [41]. This cross section only has meaning for

distinguishable particles as for the asymmetric or heteronuclear scattering case and is given

by

σd = 2π

∫ π

0

I(θ)(1− cos θ) sin θdθ, (5)

III. HE-HE RESULTS

A. He-He interaction potentials

Figure 1 shows interaction potentials versus internuclear separation for two He atoms from

various sources. Here the radius is on a logarithmic scale to emphasize the smaller radii.

Also, the larger values of the potential are plotted on a logarithmic scale while the lower

values are plotted on a linear scale. Potentials predicted by theory and derived from beam

scattering experiments are shown by the points. Recent theory and experiment for the larger

separations has been reviewed and correlated by Aziz and collaborators [42, 43] and leads

to the dashed curve (which coincides with the solid curve at large radius). At intermediate

radius we show results from experiment [44, 45] and theory [46–48]. Our calculation using

Gaussian98 [49] are shown by the solid points. At large separations this theory gave poor

results and is not shown. The dotted line at very small radii shows the Coulomb interaction

potential for two helium nuclei. The points shown by crosses near 0.1 bohr are derived from

the measured [50] scattering of He+ by He. As for Ar+ scattering by Ar, this curve is very

close to the theoretical results for neutral atoms[11].

The solid curve shows our adopted ground state interaction potential. This potential uses

an analytical fit to a modified screened Coulomb formula [51] for small radii and a formula

from Ref. [42] at larger radii. We did not utilize the most recent results [43] because of their

analytical complexity and the small change in the potential caused by “retardation” effects.

A number of authors [30, 31, 34, 37, 52] have discussed the potentials for excited states

of He2 (not shown). In general, it is found that the excited states and the ground state

approach closely and or cross at radii of ∼ 1.2 bohr and less. Their effects on differential

cross section are cited in Sec. III C. The analytic formula for our adopted ground state
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potential is given in Appendix A.

B. He-He attenuation cross sections

In this section we are concerned with the beam attenuation cross section or just the

attenuation cross section defined by Eq. 3. It is obtained experimentally by measuring the

exponential attenuation of a narrow beam of He atoms under conditions in which multiple

collisions with He atoms can be neglected. It varies with the angular size of the atom

detectors. Theoretically, it is calculated by applying Eq. 3 to the differential cross sections

or its equivalent in terms of scattering phase shifts [11]. In the limit of a very small detector

one obtains the sum of the elastic and inelastic angular-integrated cross sections that is

independent of detector size. We will call this limit the total cross section. Although

the cross sections obtained using the larger detector areas are sometimes also called total

cross sections, we recommend against this terminology because of the dependence of this

cross section on the apparatus dimensions. In theory papers [23, 53] and at energies below

excitation threshold the is is often called the integrated elastic cross section or simply the

elastic cross section. Because of the vagueness of the abbreviated terminology elastic cross

section, we recommend against using it.

Figure 2 shows beam attenuation cross sections σatt as a function of the angular half-width

subtended by the He atom detector. The smooth curve shown is obtained by applying Eq.

3 to the elastic differential cross sections calculated using our adopted potential. The angle

independent scattering at small angles and the structure near 0.1 ◦ are caused by quantum

mechanical diffraction effects [27]. The experimental points shown for angles greater than 0.1

◦ are taken from the measurements and compilation of Newman et al [54]. The older data was

obtained [45, 54–58] in the course of determinations of the intermediate radius interaction

potentials. The points shown at 0.018 ◦ are obtained by extrapolating the differential cross

sections of [54, 59] to zero and integrating from 0 to 90 ◦. These experimental results agree

very well with the theoretical σt values cited in Sec. III E. In addition, the agreement of the

calculated and measured σatt values constitute a successful test of our theoretical model for

the smaller scattering angles. The relatively recent results of Ruzic and Cohen [60] for 200

and 750 eV lie significantly above and below, respectively, those of Fig. 2. Note that the

effects of inelastic collisions at large angles shown in Fig. 3 are just becoming noticeable at
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the largest angles shown in Fig. 2.

The use of measured σatt values in isotropic scattering models instead of σv has greatly

overestimated the large angle scattering that is important for limiting fast-atom transport

in moderate and high pressure plasmas. See, for example, the use of the results of Ref. [44]

in Ref. [13].

C. He-He differential cross sections

Differential cross sections for He atom-He atom collisions expressed in the ”reduced” form

[61] of ρ(τ) = θ ∗ Sin(θ) ∗ I(θ, E) versus τ = θ ∗ E are shown in Fig. 3. Note that the ρ(τ)

functions are not symmetric about τ/E = 90 deg, as are I(θ) values. The results of our

JWBK calculations using the interaction potentials are shown by the solid curve of figure 1

for a relative energy of 750 eV. The symmetry oscillations have been removed by averaging

the calculation over an angular range comparable with the experimental angular resolution.

The points show the experimental sum for all scattering processes measured by Newman et

al [54] and by Nitz et al [59] for the same relative energy. In this figure, the experimental

I(θ, E) in the laboratory frame have been converted into center-of-mass values [62]. The

relative ρ values of Brenot et al [32] for the dominant elastic and inelastic processes are

renormalized, i.e., increased by ≈ 3, to our theory at their smallest angles, where elastic

scattering is dominant. We have shown data for their nearest relative energy of 1000 eV.

Figure 3 also compares our theoretical elastic scattering results with measured I(θ, E) for

excitation and ionization [30–32, 34] for their relative collision energy E of 1000 eV.

The departure of the sum of the differential scattering cross sections from the elastic scat-

tering results beginning at τ ≈ 3 keV-deg is attributed to the effects of inelastic scattering.

The decrease in the experimental elastic differential cross section is particularly rapid and

is similar to that observed for strong absorption cases in nuclear collisions [63]. The energy-

loss experiments [31, 32] show that the excitation predominantly results in the excitation

of either one or two atoms to the first group of excited states. Theory and experiment [32]

show that principally 21P states are excited. The sum of the differential cross sections for

ionization is also shown. The collision products change from an ion plus atom to an ion

plus an excited atom as the collision energy increases [32]. CHECK THIS From figure 3,

we see that inelastic collisions resulting in small angle scattering is very unlikely. Because
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of symmetry, this data also implies small scattering near 180 deg. This means that inelastic

scattering for classically low impact parameter trajectories and close distances of approach is

very small and elastic scattering probably occurs. This reasoning is consistent with Brenot

et al [32] statement that elastic scattering rises toward the calculated elastic scattering curve

at large angles.

Olson et al [34] and Gauyacq [35, 37] calculate differential cross sections for excitation

of He(21P ) and He(21S) in He-He collisions for collision energies from 50 to 250 eV. They

obtain rather good agreement with the relative experimental results of Morgenstern et al

[31] for energies of 100 to 200 eV. Integrated cross sections are discussed in Secs. IIID and

III E.

D. He-He integrated inelastic cross sections

Figure 4 shows excitation and ionization cross sections for symmetric He atom-He atom

collisions. The curves show the results of photon and electron collection experiments in-

tegrated over the usual 180◦ in center-of-mass. The points show the results of theoretical

calculations and scattering experiments, but integrated over 180◦, instead of the 90◦ con-

ventionally used for identical atom scattering theory and scattering experiment[64].

At low energies the dominant process is the excitation of the 21P state resulting in the

excitation of one or both atoms[31, 32] and the emission of 58.4 nm radiation[33, 65, 66].

At higher energies excitation of other states of He is observed from emission [65], but is

difficult to detect from scattering measurements. Ionization cross sections are determined

by the collection of electrons[67] and by collecting scattered and energy analyzed ions[30].

Other ionization data is compared the values shown here in Ref. [38]. The crosses in figure

4 show upper limits to the sum of the inelastic cross sections as calculated using the cut-off

angles discussed in section III C and assuming that the sum of the differential cross sections

is equal to the values obtained in our JWBK calculation of elastic scattering. Because the

data of Fig. 3, and similar data for other rare gas pairs, show that the sum of the differential

cross sections in the angular range of strong inelastic effects is roughly half the calculated

elastic scattering, we expect the crosses to be roughly twice the actual sum of the inelastic

cross sections[68]. This ratio is consistent with the experimental data of figure 4 and sets

upper limits to the metastable excitation discussed below.

8



We show the calculated He(21P) excitation cross sections of Olson et al. [34] and of Gauy-

acq [35, 37] in Fig. 4. For collision energies above roughly 100 eV, the theoretical integrated

excitation and ionization cross sections are remarkably close to experiment without making

the adjustment in experimental magnitude previously proposed[35, 37]. It would appear

that the theory misses a 21P excitation channel near threshold.

After the application of the factor of two for different angular integration ranges, the

agreement between theory[35, 37] and experiment[67] is as good as one can expect. The

spectra of electrons ejected in ionizing He-He collisions has been measured and used to test

models of the collisions[69].

Direct excitation of the He(23S) metastable state in He-He collisions appears to occur

only when two-electron excitation of the He-He molecule occurs, followed by dissociation in

which both atoms are excited [32, 35] or when one atom is ionized and one is excited [32].

According to Gauyacq [35], excitation of electrons in each atom to the 2s orbital is compara-

ble with single excitation of the 2p orbital and subsequent 21P production from threshold to

100 eV, but is smaller at higher energies. However, the fraction leading to direct excitation

of 23S is apparently unknown. Excitation of 23S via cascading from higher levels is roughly

an order of magnitude smaller than 21P excitation [70]. The data for 587.6 radiation from

the 33D state and subsequent He(23S) production appears to be inconsistent between Ref.

[65] and Ref. [70]. We have chosen the energy dependence of the former and the magnitude

of the latter reference. Theory [35] suggests that excitation of the higher states shown occurs

via the two-electron excitation process. As a tentative sum of excitation cross sections for

the He(23S) metastable state in He-He collisions we suggest 20% of the theoretical 21P exci-

tation cross section. IS THE USE OF THE CONVENTIONAL ”TWO-ELECTRON EXCI-

TATION” TERMINOLOGY CLEAR ENOUGH? I LIKE ”TWO-ATOM EXCITATION”

BECAUSE THAT IS WHAT THE EXPERIMENT SEES, BUT THEORETICIANS LIKE

TWO-ELECTRON EXCITATION OF THE TEMPORARY MOLECULE.

Direct excitation of the He(21S) metastable states in He-He collisions can occur via ex-

citation of the 1s orbital [34, 35, 37] or when two-electron excitation of the He-He molecule

occurs [35, 37]. Including both processes leads to a somewhat larger 21S cross section

[35]. The He(21S) metastable is also produced by cascade excitation from the 21P state,

but imprisonment of the 58.4 nm resonance radiation is required for efficient metastable

production[71]. Additional 21S production occurs through cascading from the 31D state of
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Fig. 4. As a tentative sum of excitation cross sections for the He(21S) metastable state in

He-He collisions and in the absence of imprisonment of the 58.4 nm radiation, we again

suggest 20% of the theoretical 21P excitation cross section.

E. He-He transport cross sections

Figure 5 shows total σt and viscosity σv cross sections versus center-of-mass energy for

symmetric He-He collisions. The σt is appropriate to models of beam experiments, while

the σv is more useful in models of swarm and discharge experiments. The uppermost set of

curves and points show the total cross section σt as defined in Sec II. The solid curves are the

results of our elastic scattering theory using the potential shown by the solid curve of figure

1. The double-dot-dashed line shows that σt values calculated using only the long-range,

van der Walls interaction [51] and the small angle scattering model of Massey and Mohr [72]

are within a factor of three of the detailed theory and experiment. The σt points at energies

below about 0.1 eV are representative of measurements[73] showing oscillatory structure at

very low He-He collision energies. The σt points at above 250 eV are ”total” cross sections

obtained by combining differential cross section measurements at low [54] and high [59]

angular resolution, extrapolating to zero and 90◦, and applying 3 from zero to 90◦. We note

that in spite of the inelastic effects discussed in Sec. III C there is good agreement between

the sum of the elastic and inelastic cross section measurements and elastic scattering theory

for energies below 3000 eV. This presumably reflects the fact that the total cross section is

more heavily weighted toward smaller scattering angles and larger radii of closest approach,

where in elastic effects are relatively unimportant.

The lower solid curve in figure 5 is the results of our calculation of the elastic viscosity

cross section σv using the adopted potential of figure 1. The crosses show σv inferred from

viscosity and thermal conductivity measurements [26, 74–76] using first order Chapman-

Cowling theory [26]. The agreement with our theory for energies below about 1 eV is very

good [77] as expected because of our use of long range potentials chosen to be consistent

with transport data [42]. The solid circles and squares are obtained by extrapolating the

measured elastic sin(θ)I(θ) [31, 32] data to 90◦ and then calculating the elastic σv using

Eq. 4. These points can be compared with the barely discernible dotted curve calculated

by assuming that the elastic differential scattering drops to zero at angles greater than that
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at which the observed elastic scattering decreases by a factor of 2 [78]. We see that at a

collision energy of 1 keV our analysis of the experimental data yields an elastic σv value a

factor of 30 below the value calculated considering only elastic scattering.

The open circles and squares show the sum σv values obtained from the published sum of

θSin(θ)I(θ) data by extrapolating sin(θ)I(θ) [31, 32] to 90◦ and then calculating the sum σv

using Eq. 4. There is considerable uncertainty in the total σv values at the higher energies

because most of the integrand is obtained using extrapolated data. At a collision energy of

1 keV our analysis of the experimental data yields a sum of elastic and inelastic σv cross

sections of about 70% of the value calculated considering only elastic scattering.

The dashed curves in figure 5 show our empirical analytical fits to the derived elastic and

sum σv data. Analytic fits to the various viscosity cross sections are given in the Appendix.

Tabulations of the calculated elastic cross sections and analytic fits are available [79].

IV. NE-NE RESULTS

A. Ne-Ne interaction potentials

Figure 6 shows representative interaction potentials for the interaction of ground state

Ne atoms versus internuclear separation. The potential represented by the solid curve at

radii of less than 2.5 bohr is chosen to interpolate smoothly between the theoretical values

of Gianturco and Dilonardo [47] at small radii and the recommendation of Aziz and Slaman

[80] at large radii . We have shown by points some of the medium-range potentials calculated

from theory [47, 81] and potentials inferred from beam scattering experiments [82–85]. Our

calculations using Gaussian98 [49] are shown by the solid points. For comparison purposes

we have shown the potential calculated for bare Ne nuclei and the potential inferred from

Ne+ collisions with Ne [50]. At small radii, our potentials are much more repulsive than

that of Aziz and Slaman and approach the potential for the bare nuclei. Note that the

experimentally based potential of Berry [83] and and the theoretically based potential of

Abrahamson [81] are considerably above the other data. We have not shown potentials for

the excited states of Ne2 that approach and/or cross the ground state curve at radii less

than ≈ 2.0?? bohr, but consider their effects on scattering in Sec. IVC.

At the larger radii, there is generally good agreement [80, 86] as to the interaction po-
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tential for Ne-Ne internuclear separations larger than 3 au and energies less than 10 eV. We

have used the recommendation of Aziz and Slaman rather than the very recent refinements

of theoretical potentials [86, 87], which have not been tested against experiment. NOT A

VERY GOOD ARGUMENT

B. Ne-Ne attenuation cross sections

Figure 7 shows beam attenuation cross sections σatt as a function of the angular half-width

subtended by the Ne atom detector. The solid curve is calculated by applying Eq. 3 to the

elastic differential cross sections calculated using our adopted potential. The experimental

attenuation cross sections shown for angles near 0.1 ◦ are plotted for effective detector sizes

based on our interpretation of the analysis of Amdur and Mason [55, 82]. The data points

for detector half-widths above 30◦ are obtained by integration of I(θ) derived from the data

of Berry [83]. Note that these results are much larger than the predictions of the elastic

scattering theory in spite of the reduction in the attenuation cross section below the elastic

scattering values expected at large angles because of inelastic collisions. See Sec. IVC. These

large values are consistent with the large values of the interaction potential shown in Fig. 6.

POSSIBLY FIGURE 7 SHOULD BE OMITTED AND THE TEXT CHANGED TO SAY

THAT THESE DATA SETS ARE USED ELSEWHERE IN THIS SECTION.

C. Ne-Ne differential cross sections

Differential cross sections for Ne atom-Ne atom collisions expressed in reduced differential

cross section form [61] of ρ(τ) = θ ∗ Sin(θ) ∗ I(θ, E) versus τ = θ ∗ E are shown in Fig. 8.

The elastic differential cross section from JWBK calculations using our adopted interaction

potential from Fig. 6 is shown for a relative energy of 500 eV. The absolute values of the sum

of the differential cross sections for elastic and inelastic scattering from the measurements

of Berry [83] appear much too large, especially when one considers the expected reduction

in magnitude at large angles caused by inelastic effects. See Sec. III C and Fig. 3.

The relative experimental values of ρ for elastic scattering from Brenot et al [32] as

fitted to their elastic scattering theory are in good agreement with our theory at small

angles where experiment shows that elastic scattering is dominant. The rapid decrease in
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the experimental elastic differential cross section beginning at about τ = 5.5 keV-deg is

attributed to the effects of inelastic scattering. The associated energy-loss experiments [32]

show that the inelastic collision results principally in the excitation of one atom to the 2p53p

(Paschen notation) configuration at τ values ≤ 6 keV deg. Weak excitation of atoms to the

2p53s configuration is observed. At larger τ the simultaneous excitation of both atoms to

the 3p configuration dominates. This interpretation is confirmed by emission experiments

[70, 88] and theory [89], although the details of the reactions proposed by different authors

vary. Kempter et al [70] find that the excitation is distributed over about eight of the ten

2p53p levels. The differential cross sections for ionization are also shown, where the collision

products change from an ion plus a ground state atom to an ion plus an excited 3p atom

or an ion as τ increases [32]. Measurements of photon coincidence rates [88] indicate that

about 25% of the excitation events result in two excited atoms. Elastic scattering at large

angles is assumed remain small.

Gauyacq [89] calculates reduced differential cross sections for one and two atom excitation

of Ne(2p53p) in Ne-Ne collisions for collision energies of 500 eV. He obtains rather good

agreement with the normalized experimental results of Brenot et al [32]. Integrated cross

sections are discussed in Secs. IVD and IVE.

D. Ne-Ne integrated inelastic cross sections

Figure 9 shows excitation and ionization cross sections for symmetric Ne atom-Ne atom

collisions. The curves show the results of representative photon collection experiments

[65, 90] and of electron collection experiments by Amme and Haugsjaa [91]. CHECK GAUY-

ACQ’S THESIS FOR INTEGRATED THEORETICAL QS. A comparison of experimental

and empirical ionization cross sections has been made by Kunc and Soon [38].

???We show the calculated Ne(2p53p) excitation cross section of Gauyacq [89] in Fig.

9.??? Because of the identity of target and projectile and the symmetry of the scattering

about 90◦, we expect the measured total photon or electron-ion production cross sections

to be twice the ”event” cross sections inferred from theoretical and experimental differential

cross section data. See Ref. [64]. The theoretical integrated excitation and ionization cross

sections appear to be somewhat larger than the expected half the sum of the 58.4 nm and

electron production cross sections shown. The spectra of electrons ejected in Ne-Ne collisions
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show autoionization peaks at energies from 14 to 21 eV [69].

Direct excitation of the Ne(23S) metastable states in Ne-Ne collisions appears to occur

only when two-electron excitation of the Ne-Ne molecule occurs, followed by dissociation in

which both atoms are excited [32, 35] or when one atom is ionized and one is excited [32].

According to Gauyacq [35], excitation of two electrons to the 2s orbital is comparable with

single excitation of the 2p orbital and subsequent 21P production from threshold to 100 eV,

but is smaller at higher energies. However, the fraction leading to direct excitation of 23S

is apparently unknown. Excitation of 23S via cascading from higher levels is roughly an

order of magnitude smaller than 21P excitation [70]. The data for 587.6 radiation from the

31D and subsequent Ne(23S) production is inconsistent between Ref. [65] and Ref. [70]. We

have chosen the energy dependence of the former and the magnitude of the latter reference.

Theory [35] suggests that excitation of the higher states occurs via the two-electron excitation

process.

Direct excitation of the Ne(21S) metastable states in Ne-Ne collisions can occur via ex-

citation of the 1s orbital [34, 35, 37] or when two-electron excitation of the Ne-Ne molecule

occurs [35, 37]. Including both processes leads to a somewhat larger 21S cross section [35].

The Ne(21S) metastable is produced by cascade excitation from the 21P state, but impris-

onment of the 58.4 nm resonance radiation is required for efficient metastable production

[71]. Additional 21S production occurs through cascading from the 31D state of Fig. 9.

E. Ne-Ne transport cross sections

Figure 10 shows total σt and viscosity σv cross sections for symmetric Ne-Ne collisions.

The solid curves are the results of our theory using the potential shown by the solid curve

of figure 6. Tabulations are available [79]. The uppermost set of curves and points show the

total cross section σt as defined in Sec II. The double-dot-dashed line shows that σt values

calculated using only the long-range, van der Walls interaction [51] and the small angle

scattering model of Massey and Mohr [72] are within a factor of two of the detailed theory

and experiment. The σt points [31, 92] at energies below about 0.1 eV are representative

of measurements showing oscillatory structure at very low Ne-Ne collision energies. The

σt open triangles at above 250 eV show beam attenuation cross sections [82] and are lower

limits to the sum of the elastic and inelastic total cross sections.
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The lower solid curve in figure ?? is the result of our calculation of the elastic viscosity

cross section σv using the adopted potential of figure 6. The open circles show viscosity

cross sections inferred from our power law fit [77] to viscosity and thermal conductivity

measurements [25, 26, 28, 93] using first order Chapman-Cowling theory [26]. The agreement

with our theory for energies below about 0.2 eV is very good [77] as expected because of our

use of long range potentials chosen to be consistent with transport data [42].

The solid diamond shown at 500 eV is obtained by extrapolating the measured elastic

sin(θ)I(θ) [32] data to 90◦ and then calculating the elastic σv using Eq. 4. This point can

be compared with the crosses calculated by assuming that the elastic differential scattering

drops to zero at angles greater than that at which the observed elastic scattering decreases

by a factor of 2, i.e., a ”cut-off” model[78]. For Ne-Ne collisions this cut-off occurs near 5.5

keV deg. The lower dashed curve in figure ?? shows our empirical analytical fit (given in

the appendix) to the derived elastic σv data. We see that at a collision energy of 500 eV our

analysis of the experimental data yields an elastic σv value a factor of 25 below the value

calculated considering only elastic scattering.

The open diamond shows the sum σv value obtained from the published sum of

θSin(θ)I(θ) data by extrapolating sin(θ)I(θ) [31, 32] to 90◦ and then calculating the sum

σv using Eq. 4. The dashed curve through this point shows our empirical analytical fit. It is

given in the Appendix. There is considerable uncertainty in the sum σv values at the higher

energies because most of the integrand is obtained using extrapolated data. At a collision

energy of 500 eV our analysis of the experimental data yields a sum of elastic and inelastic

σv cross sections of about 40% of the value calculated considering only elastic scattering.

Tabulations of the calculated elastic cross sections and analytic fits are available [79].

DOES ONE NEED TO ADD A REPRESENTATIVE INELASTIC CROSS SECTION

TO FIGURE ???

V. AR-AR RESULTS

The results presented here for elastic Ar-Ar collisions at low energies follow closely those

published recently[94]. At higher energies, the analysis of the effects of inelastic Ar-Ar

collisions on the differential and integral cross sections has made use of the simplified models

developed in section III to correlate the relatively complete experiments and theory for He-
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He collisions.

A. Ar-Ar interaction potentials

Figure 11 shows representative Ar atom Ar atom interaction potentials versus internuclear

separation [71]. Note that the upper portions (> 0.0004 au) of the curves are plotted on

a logarithmic scale while the lower portions (< 0.0004 au) are plotted on a linear scale.

Also, the internuclear separation r is plotted on a logarithmic scale to emphasize the data

at small radii. The potential represented by the solid curve is chosen to approximate the

theoretical values of Gianturco and Dilonardo [47]. The broken curves represent the results

of Berry [95], Robinson [96], and the short range potential of Aziz and Slaman [97] as

discussed in some detail previously[94]. We have shown by points some of the medium-

range potentials calculated from theory [32, 81, 98, 99] and potentials inferred from beam

scattering experiments [39, 40, 85, 95, 100]. We see that there is considerable disagreement

for separations less than 3 au and energies greater than 10 eV that are of importance for

calculations of transport cross sections at collision energies above 100 eV. Not surprisingly,

the difference between the adopted potential and the potential calculated for bare nuclei

(shown by the dotted line) is larger than for He-He and Ne-Ne.

There is generally good agreement among authors [25, 26, 28, 93, 97, 101] as to the

interaction potential for Ar-Ar internuclear separations larger than 3 au and energies less

than 10 eV. We have utilized and shown the recommendation of Aziz and Slaman[97, 101].

B. Ar-Ar attenuation cross sections

Figure 12 shows beam attenuation cross sections σatt as a function of the angular half-

width subtended by the Ne atom detector. The solid curve is calculated by applying Eq. 3

to the elastic differential cross sections calculated using our adopted potential. The experi-

mental attenuation cross sections shown for angles near 0.1◦ are plotted for effective detector

sizes based on our interpretation of the analysis of Amdur and Mason [55, 82]. The data

points for detector half-widths above 30◦ are obtained by integration of I(θ) derived from

the data of Berry [83]. Note that these results are much larger than the predictions of the

elastic scattering theory in spite of the reduction in the attenuation cross section below the
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elastic scattering values expected at large angles because of inelastic collisions. See Sec. VC.

These large values are consistent with the large values of the interaction potential shown in

Fig. ??.

C. Ar-Ar differential cross sections

Figure 13 compares the experimental differential cross section for 40Ar-40Ar atoms from

Berry [95] (points) with the theoretical results calculated using the Gianturco-Aziz (solid

curve) and Berry-Aziz potentials (dot-dash curve) for a collision energy of 1000 eV. The

experimental data have been converted to differential cross sections in center-of-mass coor-

dinates. The theoretical results have been averaged over an angle of 4◦ (FWHM) to simulate

the experimental angular resolution. This procedure averages out the large amplitude sym-

metry oscillations [102] with an apparent period of approximately 0.2◦. Figure 13 shows

calculated results for asymmetric 38Ar-40Ar atom collisions, as well as our empirical fit to

theory from section ??. The Berry-Aziz potential gives a significantly better fit of theory to

the experimental data than does the Gianturco-Aziz potential. Because of the incomplete

analysis of the extended collision geometry of this experiment [95], we place less weight

on this agreement and adopt the recently-confirmed theoretical Gianturco and Dilonardo

potential at small radii [47, 103]. See section ??.

In this section we consider the contributions of inelastic scattering to the differential cross

section for collisions of Ar with Ar. Figure 13 shows our theoretical results and measured

differential cross sections for excitation [32] and ionization [104] for a collision energy E

of 1000 eV. We use the reduced differential cross sections (ρ = θ sin(θ)dσ(θ, E)/dθ) versus

reduced angle (τ = Eθ) so as to obtain plots that are independent of whether the data

is expressed in center-of-mass or laboratory coordinates and are nearly independent of the

collision energy at small τ [36]. In this type of plot isotropic scattering peaks at 90◦. The

theoretical ρ values shown have been smoothed with a Gaussian of 0.2◦ width (FWHM)

to simulate the experimental angular resolution [32, 104]. This greatly reduces the large

amplitude symmetry oscillations in the theory.

In figure 13 the measured relative ρ values Brenot et al. [32] are normalized to our theory

at small angles where elastic scattering is dominant. Their cross sections measured at 1 keV

(CM) have been extended to larger θ values using the measurements at 2 keV (CM) [32] and
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assuming the validity of the theoretical ρ versus τ scaling [36]. For 6 < τ < 25 ◦ keV the

relative values of the neutral atom contribution to ρ of Eriksen et al. [104] are normalized to

the sum of the inelastic contributions to ρ from Brenot et al. [32]. The resultant differential

cross sections for ionization for τ < 30◦ keV are then extended as shown by the dotted curve

so as to yield the integrated ionization cross section of 2.5 × 10−20 m2 shown in figure 15.

Here we assumed that the differential cross section for ionization is symmetrical about 90◦

in CM and we count ionization events over the entire 180◦, just as in the experiments.

The sum of the integrated excitation cross sections from figure 13 is 3.5 − 5.9 × 10−20

m2 compared to σvuv
t = 2.6 × 10−20 m2 from figure 15. Here the uncertainty results from

experiments [32] indicating that in some excitation events both colliding atoms are excited.

This comparison appears to require a cross section for production of non-radiating excited

atoms, i.e., metastables, of σmeta
t = 1− 3× 10−20 m2 at 1000 eV or about equal to the vuv

cross section. Metastable atom production has not been detected at these collision energies

[105] because of the large ionization background. In figure ?? elastic scattering at large

angles is assumed negligible, although Brenot et al. [32] say that it rises at large angles.

Departures of the sum of inelastic and elastic scattering differential cross sections from

theoretical elastic scattering values when inelastic scattering is large, as in figure ??, have

been obtained for collisions between He atoms [32, 54]. From figures ?? and ?? the value

of τ ≈ 5◦ keV at which the elastic scattering decreases rapidly and the inelastic scattering

increases rapidly corresponds to an impact parameter of 2.8 au [32]. This radius is in

approximate agreement with the estimated onset of potential curve crossing [32, 65, 104].

The limited and roughly energy-independent range of τ and impact parameter over which

inelastic scattering is important has been discussed for He+-Ne collisions [106] and for H+-H2

collisions [107]. On the basis of the small elastic scattering at large τ and large wave-number

(ka0 ≈ 1600) at 1000 eV, these collisions are analogous to those found for the smooth cut-off,

strong-absorption models of nuclear physics [63].

D. Ar-Ar integrated inelastic cross sections

Figure 14 shows excitation and ionization cross sections for symmetric Ar atom-Ar

atom collisions. The curves the results of representative photon collection experiments

[65, 108, 109] and of electron collection (ionization) experiments [105]. Note that the some-
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what uncertain cross sections measured for ionization and vuv production very close to the

energetic threshold are too small to show in figure 14.

Particularly noteworthy is the virtual equality of the cross sections for vuv production[65,

108–110] and for electron production by ionization[105]. This near equality is much different

than for He-He collisions, where the vuv production[65] is large compared to ionization, and

for Ne-Ne collisions, where the reported uv production[65] is small compared to ionization.

Another way of saying this is that the ionization cross section for He-He collisions is partic-

ularly small (BUT WHY NOT EXCITATION?). Empirical ionization cross sections have

been discussed by Kunc and Soon [38] and we will not review them here. SUMMARIZE

OTHER PAPERS ON RARE GAS IONIZATION.

Direct excitation of the Ar(3p54s3S) metastable states in Ar-Ar collisions appears to

occur when two-electron excitation of the Ar-Ar molecule occurs, followed by dissociation in

which both atoms are excited [32]. Data is not available when one atom is ionized and one

is excited [32]. Excitation of 3p54s3S via cascading from higher levels is roughly an order

of magnitude smaller than 3p54s1P excitation [70]. The data for 587.6 radiation from the

3p54s1D and subsequent Ar(3p54s3S) production is inconsistent between Ref. [65] and Ref.

[70]. We have chosen the energy dependence of the former and the magnitude of the latter

reference.

The chain curve of figure 14 shows the sum of the measured excitation and ionization

cross sections. At a collision energy of 1000 eV it is to be compared to the integrated sum of

the excitation and ionization cross sections calculated from the differential scattering data

shown in figure 13. The ratio of cross sections is somewhat larger than the factor of two

expected from the difference in the range of integration angles[111].

E. Ar-Ar transport cross sections

Figure ?? shows total σth
t and viscosity σth

v cross sections for symmetric Ar-Ar collisions.

The solid curves are the results of our theory using the potential shown by the solid curve of

figure 11. Tabulations are available [79]. The short dashed curves are calculated using the

dashed potential energy curve. At low energies we show the total cross section calculated

using only the long-range, van der Walls interaction and the small angle scattering model of

Massey and Mohr [72]. The points show viscosity cross sections inferred from viscosity and
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thermal conductivity measurements [25, 26, 28, 93]. For comparison purposes, we show the

accidentally-equal ionization σi and vuv excitation σvuv cross sections [112]. The viscosity

cross section proposed by Serikov and Nanbu [10] from an extrapolation of thermal viscosity

data is somewhat lower than our result in the 1 to 10 eV range.

VI. KR-KR RESULTS

A. Kr-Kr interaction potentials

Figure 16 shows representative Kr atom - Kr atom interaction potentials versus inter-

nuclear separation. Again, the upper portions are plotted on a logarithmic scale while the

lower portions are plotted on a linear scale, while the internuclear separation r is plotted on

a logarithmic scale. The potential represented by the solid curve is chosen to approximate

the theoretical values of Gianturco and Dilonardo [47] at short ranges and the potential

recommended by Dharn et al[113]. The chain curve shows the short-range portion of the

potential from Dharn et al. We have shown by points some of the medium-range potentials

calculated from theory [32, 81, 98, 99] and potentials inferred from beam scattering exper-

iments [40, 114]. We see that there is considerable disagreement for separations less than

3 au and energies greater than 10 eV that are of importance for calculations of transport

cross sections at collision energies above 100 eV. In particular, we note that our potential is

much more repulsive than that of Dharn et al at small radii.

There is generally good agreement [113] as to the interaction potential for Kr-Kr inter-

nuclear separations larger than 3 au and energies less than 10 eV. We have not attempted

to test alternate long range potentials [25, 26, 28, 93].

B. Kr-Kr integrated inelastic cross sections

Figure ?? shows excitation and ionization cross sections for symmetric Kr atom-Kr

atom collisions. The curves the results of representative photon collection experiments

[65, 108, 109] and of electron collection (ionization) experiments [105]. Note that the some-

what uncertain cross sections measured for ionization and vuv production very close to the

energetic threshold are too small to show in figure 14.
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C. Kr-Kr transport cross sections

Figure 17 shows total σth
t and viscosity σth

v cross sections for symmetric Kr-Kr collisions.

The solid curves are the results of our theory using the potential shown by the solid curve of

figure 16. Tabulations are available [79]. The short dashed curves are calculated using the

dashed potential energy curve. At low energies we show the total cross section calculated

using only the long-range, van der Walls interaction and the small angle scattering model of

Massey and Mohr [72]. The points show viscosity cross sections inferred from viscosity and

thermal conductivity measurements [25, 26, 28, 93].

VII. XE-XE RESULTS

Figure 18 shows representative Xe atom-Xe atom interaction potentials versus internu-

clear separation. Note that the upper portions (> 0.0004 au) of the curves are plotted on

a logarithmic scale while the lower portions (< 0.0004 au) are plotted on a linear scale.

Also, the internuclear separation r is plotted on a logarithmic scale to emphasize the data

at small radii. We have carried out calculations for two interaction potentials that differ for

the smaller r so as to evaluate the corresponding changes in cross sections. The potential

represented by the solid curve is chosen to approximate the theoretical values of Gianturco

and Dilonardo, [47] and is used in our calculations of elastic scattering. The chain curve

shows the short-range portion of the potential recommended by Aziz and Slaman [97, 101]

based on the theory of Pathak and Thakar [115]. We have shown by points some of the

medium-range potentials calculated from theory [32, 81, 98, 99] and potentials inferred from

beam scattering experiments [39, 40, 85, 95, 100]. We see that there is considerable disagree-

ment for separations less than 3 au and energies greater than 10 eV that are of importance

for calculations of transport cross sections at collision energies above 100 eV. In particular,

we note that our potentials are much more repulsive than that of Aziz and Slaman.

At the larger radii, there is generally good agreement [97, 101] as to the interaction

potential for Kr-Kr internuclear separations larger than 3 au and energies less than 10 eV.

We have shown the recommendation of Aziz and Slaman and have not attempted to represent

or utilize the alternate potentials [25, 26, 28, 93].

Figure 19 shows total σth
t and viscosity σth

v cross sections for symmetric Kr-Kr collisions.
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The solid curves are the results of our theory using the potential shown by the solid curve of

figure 18. Tabulations are available [79]. The short dashed curves are calculated using the

dashed potential energy curve. At low energies we show the total cross section calculated

using only the long-range, van der Walls interaction and the small angle scattering model of

Massey and Mohr [72]. The points show viscosity cross sections inferred from viscosity and

thermal conductivity measurements [25, 26, 28, 93]. For comparison purposes, we show the

accidentally-equal ionization σi and vuv excitation σvuv cross sections [112].

VIII. HE-NE RESULTS

IX. HE-AR RESULTS

X. NE-XE RESULTS

XI. DISCUSSION

An aspect of these results that needs to be emphasized is that the common assumption

that the cross sections for excitation and ionization can be treated as isotropic scattering

with a magnitude equal to the total cross section greatly overestimates the large angle

scattering at high collision energies. This approximation is equivalent to assuming that

large angle elastic and inelastic scattering at high energies is unimportant in the models

(or that atom-atom scattering is unimportant in the overall model). At high energies, the

inelastic scattering dominates the sum of the viscosity cross sections and determines the

rate of energy transport by fast atoms. Also at high energies, the fractional energy loss is

small and inelastic scattering acts a lot like elastic scattering as assumed in the continuous

energy loss approximation [? ]. In the case of He-He collisions at 1000 eV, the sum of the

inelastic cross sections is ∼ 1.5× 10−20 m2, whereas we found that the sum of the inelastic

viscosity (energy transfer) cross sections is only ∼ 1.5× 10−22 m2. For Ar-Ar collisions the

sum of the inelastic cross sections is ∼ 5× 10−20 m2, whereas we found that the sum of the

inelastic viscosity cross sections is only ∼ 10−21 m2.
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APPENDIX A: INTERATOMIC POTENTIALS

1. Helium

For r > 1.2 bohr our potential V (r) is

V (r) = ε[A∗exp(−α∗x + β∗x2)− F (x)(c6/x
6 + c8/x

8 + c10/x
10)], (A1)

and

F (x) = exp[−{(D/x)− 1}2] for x < D

= 1 for x > D, (A2)

where x = r/rmin; A∗ = 1.86924404 × 105; α∗ = 10.5717543; β∗ = −2.07758779; c6 =

1.35186623; c8 = 0.414951; c10 = 0.17151143; ε = 0.3469 ∗ 10−5, hartree; D = 1.438000; and

rmin = 5.61 bohr. Here atomic units are used for the radii (1 bohr = 0.529 Å) and potentials

(1 hartree = 27.2 eV). The significant figures are those of Ref. [42].

Our fit to the results of Gianturco and Dilonardo [47] for r < 1.2 bohr that patches

smoothly on to the larger radii results of Ref. [42] is

V (r) = z1z2/rexp(−r/rscr), (A3)

where the radii and potentials are in atomic units; z1 = z2 = 1.83 atomic charges rscr = 0.8

bohr.

2. Neon

The Gianturco-Aziz potential shown in figure ?? is described by the Aziz and Slaman

formula [97] at larger radii. For r > 2.5 au the potential V (r) is

23



V (r) = ε(A∗exp(−alpha∗x + beta∗x2)− F (x)[c6/x
6 + c8/x

8 + c10/x
10]), (A4)

where x = r/rm, A∗ = 8.9571795e5, α∗ = 13.86434671, β∗ = -0.12993822, c6 = 1.21317545,

c8 = 0.53222749, c10 = 0.24570703, ε = 1.3464e-4, D = 1.36, rm = 5.843, and

F (x) = exp[−{(D/x)− 1}2] for x < D

= 1 for x > D. (A5)

For r < 2.5 au our fit to the results of Gianturco and Dilonardo [47] is then

V (r) = z1z2/r
mexp(−r/ascr), (A6)

where ascr = 0.62, m = 1.2, z1 = 7.2, and z2 = 7.2.

3. Argon

The Gianturco-Aziz potential shown in figure ?? is described by the Aziz and Slaman

formula [97] at larger radii. Here the radii and potentials are in atomic units. For r > 5 the

potential V (r) is

V (r) = ε[A∗exp(−α∗x + β∗x2)− F (x)(c6/x
6 + c8/x

8 + c10/x
10)], (A7)

where ε = 0.3359, x = r/rm, rm = 7.107, A∗ = 1.13211845 × 105, α∗ = 9.00053441,

β∗ = −2.60270226, c6 = 1.09971113, c8 = 0.54511632, c10 = 0.39278653 and

F (x) = exp[−{(D/x)− 1}2] for x < D

= 1 for x > D. (A8)

Here D = 1.00400 and atomic units are used for the radii (1 au = 0.529 × 10−10 m) and

potentials (1 au = 27.2 eV). Here the notation and constants are from [97] with some changes

to atomic units.

For r < 3 au our fit to the results of Gianturco and Dilonardo [47] is

V (r) = z1z2/r
1.5exp(−r/0.79). (A9)
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We use an arbitrary expression to interpolate between equations (A7) and (A9), i.e., if

3 ≤ r ≤ 5 au then

V (r) = 2.7(r/2)−4.5exp[−(r/5.5)8]/[1 + (r/5.)4], (A10)

where z1 = z2 = 9.5 atomic charges. This interpolation visually matches slopes at the patch

points.

4. Krypton

5. Xenon

6. He-Xe

7. Ne-Ar

APPENDIX B: ANALYTIC CROSS SECTIONS

1. Helium

The cross sections σ presented in this Appendix are in m2 and the energies E are collision

or relative energies in eV.

For He-He collisions our fit to the integrated elastic or total cross section given by the

JWBK calculation is

σt = 3.5× 10−19/[1 + (E/35)2]0.15 (B1)

For He-He collisions our fit to the elastic viscosity scattering given by the JWBK calcu-

lation is

σJWBK
v = 6.5× 10−20(E)−0.17/[1 + (E/15)0.7 + (E/100)1.6 + (E/300)1.8] (B2)

Our fit to the elastic viscosity scattering based on the experimental differential cross

section for elastic scattering is

σelastic
v = 6.5×10−20(E)−0.17/[1+(E/15)0.7 +(E/100)1.7 +(E/300)2]/[1+(E/50)2.5]0.4 (B3)
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Our fit to the sum of elastic and inelastic viscosity scattering based on the experimental

differential cross sections is

σsum
v = 6.5× 10−20(E)−0.17/[1 + (E/15)0.7 + (E/100)1.7 + (E/300)2]/[1 + (E/50)2.5]0.1 (B4)

Our fit to the measured cross section for 501.6 nm excitation by Kempter et al [33, 65] is

σ501.6 = 1.3× 10−26(E − 65)3/(1 + (E/50)2.55)] (B5)

for E > 65 eV.

Our fit to the measured cross section for 587.6 nm excitation by Kempter et al [33, 65] is

σ587.6 = 1.6× 10−21(1− exp[−(E − 85)/150])](1 + (E/1750)6)0.5; (B6)

for E > 85 eV.

Our fit to the measured cross section for 58.4 nm excitation by Kempter et al [33, 65] is

σ58.4 = 4.4× 10−26(E − 20.6)3/(1 + (E/50)2.85)

+4.4× 10−23(E − 20.6)/(1 + (E/25)4)

for E > 20.6 eV.

Our fit to the measured cross section for ionization by Hayden and Utterbak [67] is

σion = 2.3× 10−25E1.23(1− exp[−(E − 52)/10]) (B7)

for E > 52 eV.

2. Neon

For Ne-Ne collisions our fit to the integrated elastic or total cross section given by the

JWBK calculation is

σt = 3.5× 10−19/[1 + (E/35)2]0.055[1 + (0.7/E)1.]0.47/[1 + (.012/E)2]0.6 (B8)

For Ne-Ne collisions our fit to the elastic viscosity cross section given by the JWBK

calculation is

σJWBK
v = 9.8× 10−20E−0.17/[1 + 0.7(E/100)0.5 + (E/450)][1 + (.017/E)5]0.1 (B9)
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Our fit to the elastic viscosity scattering based on the experimental elastic differential scat-

tering

σelastic
v = 9.0× 10−20E−0.2/[1 + 0.7(E/100)0.5 + (E/50)4.6]0.4[1 + (.017/E)5]0.1 (B10)

Our fit to the sum of elastic and inelastic viscosity scattering based on the experimental

differential cross sections is

σsum
v = 9.8× 10−20E−0.17/[1 + 1.4 ∗ (E/100)0.5 + (E/50)2]0.5[1 + (.017/E)5]0.1 (B11)

3. Argon

The Ar-Ar cross section for total scattering σt obtained by fitting the theoretical values

shown in figure 15 is given by

σt = 2.1× 10−18E−0.4[1 + (E/15)2]0.16 (B12)

Our fit to the elastic viscosity cross section for Ar-Ar collisions from the JWBK calculation

is

σJWBK
v = 17.×10−20(E)−0.17/[1+0.8(E/100)0.5+(E/450)0.75][1+(.06/E)5]0.1/[1+(.02/E)5]0.1

(B13)

Our fit to the elastic scattering based on the experimental elastic scattering is

σelastic
v = 17.×10−20(E)−0.17/[1+3.0(E/100)0.5+(E/45)5]0.4[1+(.06/E)5]0.1/[1+(.02/E)5]0.1

(B14)

Our fit to the sum of elastic and inelastic scattering based on the experimental differential

cross sections is

σsum
v = 17.×10−20(E)−0.17/[1+3.0(E/100)0.5+(E/45)3.2]0.4[1+(.06/E)5]0.1/[1+(.02/E)5]0.1

(B15)
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FIG. 1: Interaction potentials versus internuclear separation for He atoms with emphasis on the

smaller radii. Note that the upper portion of the curves is plotted on a logarithmic scale while the

lower portion is plotted on a linear scale. The solid curve shows our adopted interaction potential,

which agrees with the recommendation of Aziz et al [42] except as shown by the short dashed

portion. Some results of theories are shown by the symbols and references: x [46]; ♦, [47]; ©, [49];

5, [48]. Potentials derived from scattering experiments are shown by the symbols and references:

4, [44]; and ¤ [45].
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FIG. 2: Attenuation cross sections σatt, for symmetric He atom-He atom collisions at 250 and

750 eV in CM. The solid curves show the results of our calculations of elastic scattering using the

interaction potentials shown by the solid curves of figure 1. The symbols and associated references

are: + [55]; 5, [56]; ♦, [57];¤, [58]; 4, [45]; and •, [54].
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FIG. 3: Differential cross sections for symmetric He atom-He atom collisions expressed in normal-

ized form of ρ = θ ∗Sin(θ) ∗ I(θ,E) versus τ = θ ∗E. The solid curve are the results of our JWBK

calculations using the interaction potentials shown by the solid curve of figure 1. The points show

the experimental sum for all scattering processes from the Rice experiments [54, 59] for a relative

energy of 750 eV. The dashed curves are the renormalized results by Brenot et al [31, 32] for the

sum of all processes and for the dominant elastic and inelastic processes for a relative energy of

1000 eV.
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sions. The curves show the results of photon and electron collection experiments integrated over 0

to 180 ◦ in center of mass. The points show theory with the same range of angle integration. See
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FIG. 5: Total σt, viscosity σv, and inelastic cross sections for symmetric He atom-He atom collisions.

The solid curves show the results of our calculations of elastic scattering using the interaction

potentials shown by the solid and dashed curves of figure 1. The chain curve is the total cross

section from the long-range potential model of Massey and Mohr [72]. The points are viscosity

cross sections inferred from viscosity and thermal conductivity measurements, as discussed in the

text. The dashed curves show our analytical fits to the various viscosity cross sections.

39



In
te

ra
ct

io
n 

po
te

nt
ia

l (
ha

rt
re

e)

0.001

0.01

0.1

1

10

100

1000

10000

10-1 1 10

Internuclear separation (bohr)

-0.0002

-0.0001

0

0.0001

0.0002

Experiment:
 Amdur and Mason (1955)
 Berry (1955)
 Lane and Everhart (1960)
 Siska et al (1971)
 Forman and Rol (1973)
 Aziz and Slaman (1989)

Theory:
 Abrahamson (1963)
 Gianturco and Dilonardo (1975)
 Gaussian98 (2002)
 nuclear potential

Our fit:

In
te

ra
ct

io
n 

po
te

nt
ia

l (
eV

)

0.01

0.1

1

10

100

1000

10000

100000

-0.004
-0.002
0
0.002
0.004

FIG. 6: Interaction potentials versus internuclear separation for Ne atoms with emphasis on the

smaller radii. Note that the upper portion of the curves is plotted on a logarithmic scale while the

lower portion is plotted on a linear scale. The solid curve shows our adopted interaction potential.

The dashed curve shows the recommendation of Aziz and Slaman [80]. Some results of theories

are shown by the symbols and references: + [81]; ♦, [47]; and •, [49]. Some potentials based on

experiment are shown by the symbols and references: 4, [82]; 5, [83]; ×, [50]; ©, [84]; ¤, [118];

and —- —- [80]. The potential for bare Ne nuclei is shown by the dotted line
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sions. The solid and short dashed curves show the results of our calculations using the interaction

potentials shown by the solid and dashed curves of figure 6. The chain curve is the total cross
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FIG. 11: Interaction potentials versus internuclear separation for Ar atoms with emphasis on the
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the lower portion is plotted on a linear scale. The solid curve shows our adopted interaction

potential, while the short-dashed curve shows an alternate potential discussed in the text. The

dot-dash line shows the potential used by Robinson [96], while the double-link chain curve shows

the recommendation of Aziz and Slaman [97]. Some results of theories are shown by the symbols

and references: ♦, [47]; ©, [49]; + [81]; 5, [98]; 4, [99]; and ×, [32]. Some potentials based on

experiment are shown by the symbols and references: £, [95]; ⊗,[100]; and © [85].
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FIG. 12: Attenuation cross sections σatt, for symmetric Ar atom-Ar atom collisions at 500 eV in

CM. The solid curves show the results of our calculations of elastic scattering using the interaction

potentials shown by the solid curves of figure ??. The dashed and chain curves are the σatt calcu-

lated using the Amdur et al[55] and Berry[119] potentials. The symbols and associated references

are: + [55]; ♦, [40]
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FIG. 13: Elastic and inelastic reduced differential scattering cross sections (θ sin(θ)dσ(θ, E)/dθ)

versus reduced angle (Eθ) for a collision energy of 1000 eV. The solid curve is for elastic collisions of

40Ar with 40Ar averaged over a Gaussian with a width of 0.2◦ that removes most of the symmetry

oscillations. The elastic experiment curve shows the relative elastic cross sections of Brenot et

al. [32] normalized to our calculations at small θ. The curves marked processes B and C show

their normalized excitation data. The ionization cross section is from the relative measurements

by Eriksen et al. [104] after normalization as discussed in the text. The dotted portions of the

curves represent extrapolations of the experiments.
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FIG. 14: Excitation and ionization cross sections for symmetric Ar atom-Ar atom collisions. The

curves show the results of photon and electron collection experiments integrated over all angles.

The point shows the result of scattering experiments integrated over 0 to 90 ◦ in center of mass.

See text for discussion. The curve types and associated references are: ——– [108, 109]; — — —,

[33, 65]; —– —–, [33, 65]; and —- - - , sum inelastic.
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FIG. 15: Total σt and viscosity σv cross sections for Ar atom -Ar atom collisions. The solid curves

show the results of calculations of total and viscosity elastic scattering[94] using the potential from

figure 11, while the chain curve is the total cross section calculated considering only the long range

potential[72]. The dashed curves are our analytical fits to the model results. The points, their

meaning, and their source are: ×, viscosity [94]; ♦, total [31]; ©, elastic viscosity [32]; + cut-off

model; 5, total [32]; 4, sum viscosity [32]; and ¤, total [120].
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FIG. 16: Interaction potentials versus internuclear separation for Kr atoms with emphasis on the

smaller radii. Note that the upper portion of the curves is plotted on a logarithmic scale while the

lower portion is plotted on a linear scale. The solid curve shows our adopted interaction potential.

The dashed curve shows the recommendation of DHarn and Aziz[113]. Some results of theories are

shown by the symbols and references: +, [81]; 4, [47]. Potentials based on beam experiment are

shown by the symbols and references: 5, [82]; and ©, [114].
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FIG. 17: Total σt, viscosity σv, and inelastic cross sections for symmetric Kr atom collisions with

Kr atoms. The solid curve show the results of our calculations using the interaction potentials

shown by the solid and dashed curves of figure 16. The chain curve is the total cross section from

the long-range potential model of Massey and Mohr [72]. The circles are viscosity cross sections

inferred from a power-law fit to viscosity and thermal conductivity measurements. The curve

marked σi
t shows the ionization cross section[112].
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FIG. 18: Interaction potentials versus internuclear separation for Xe atoms with emphasis on the

smaller radii. Note that the upper portion of the curves is plotted on a logarithmic scale while

the lower portion is plotted on a linear scale. The solid curve shows our adopted interaction

potential, while the short-dashed curve shows an alternate potential discussed in the text. The

dot-dash line shows the potential used by Robinson [96], while the double-link chain curve shows

the recommendation of Aziz and Slaman [97]. Some results of theories are shown by the symbols

and references: ♦, [47]; ©, [49]; + [81]; 5, [98]; 4, [99]; and ×, [32]. Some potentials based on

experiment are shown by the symbols and references: £, [95]; ⊗, [100]; and © [85].
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FIG. 19: Total σt, viscosity σv, and inelastic cross sections for symmetric Xe atom-Xe atom colli-

sions. The solid and short dashed curves show the results of our calculations using the interaction

potentials shown by the solid and dashed curves of figure 18. The chain curve is the total cross

section from the long-range potential model of Massey and Mohr [72]. The points are viscosity

cross sections inferred from viscosity and thermal conductivity measurements, as discussed in the

text. The curve marked σvuv
t and σi

t shows the vuv and ionization cross sections [112].
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FIG. 20: Interaction potentials versus the internuclear separation of He atoms and Ar atoms

with emphasis on the smaller radii. Note that the upper portion of the curves is plotted on a

logarithmic scale while the lower portion is plotted on a linear scale. The solid curve shows our

adopted interaction potential, while the short-dashed curve shows an alternate potential discussed

in the text. The dot-dash line shows the potential used by Robinson [96], while the double-link

chain curve shows the recommendation of Aziz and Slaman [97]. Some results of theories are

shown by the symbols and references: ♦, [47]; ©, [49]; + [81]; 5, [98]; 4,[99]; and ×, [32]. Some

potentials based on experiment are shown by the symbols and references: £, [95]; ⊗, [100]; and ©
[85].
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FIG. 21: Total σt, viscosity σv, and inelastic cross sections for He atom - Ar atom collisions. The

solid and short dashed curves show the results of our calculations using the interaction potentials

shown by the solid and dashed curves of figure 20. The chain curve is the total cross section from

the long-range potential model of Massey and Mohr [72]. The points are viscosity cross sections

inferred from viscosity and thermal conductivity measurements, as discussed in the text. The curve

marked σvuv
t and σi

t shows the vuv and ionization cross sections [112].
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FIG. 22: Interaction potentials versus the internuclear separation of He atoms and Ar atoms

with emphasis on the smaller radii. Note that the upper portion of the curves is plotted on a

logarithmic scale while the lower portion is plotted on a linear scale. The solid curve shows our

adopted interaction potential, while the short-dashed curve shows an alternate potential discussed

in the text. The dot-dash line shows the potential used by Robinson [96], while the double-link

chain curve shows the recommendation of Aziz and Slaman [97]. Some results of theories are

shown by the symbols and references: ♦, [47]; ©, [49]; + [81]; 5, [98]; 4,[99]; and ×, [32]. Some

potentials based on experiment are shown by the symbols and references: £, [95]; ⊗, [100]; and ©
[85].
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FIG. 23: Total σt, viscosity σv, and inelastic cross sections for Ne atom-Ar atom collisions. The

solid and short dashed curves show the results of our calculations using the interaction potentials

shown by the solid and dashed curves of figure 22. The chain curve is the total cross section from

the long-range potential model of Massey and Mohr [72]. The points are viscosity cross sections

inferred from viscosity and thermal conductivity measurements, as discussed in the text. The curve

marked σvuv
t and σi

t shows the vuv and ionization cross sections [112].
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FIG. 24: Interaction potentials versus the internuclear separation for Ne atoms and Xe atoms

with emphasis on the smaller radii. Note that the upper portion of the curves is plotted on a

logarithmic scale while the lower portion is plotted on a linear scale. The solid curve shows our

adopted interaction potential, while the short-dashed curve shows an alternate potential discussed

in the text. The dot-dash line shows the potential used by Robinson [96], while the double-link

chain curve shows the recommendation of Aziz and Slaman [97]. Some results of theories are

shown by the symbols and references: ♦, [47]; ©, [49]; + [81]; 5, [98]; 4,[99]; and ×, [32]. Some

potentials based on experiment are shown by the symbols and references: £, [95]; ⊗, [100]; and ©
[85].
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FIG. 25: Total σt, viscosity σv, and inelastic cross sections for Ne atom-Xe atom collisions. The

solid and short dashed curves show the results of our calculations using the interaction potentials

shown by the solid and dashed curves of figure 24. The chain curve is the total cross section from

the long-range potential model of Massey and Mohr [72]. The points are viscosity cross sections

inferred from viscosity and thermal conductivity measurements, as discussed in the text. The curve

marked σvuv
t and σi

t shows the vuv and ionization cross sections [112].
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